Cambridge IGCSE Additional Maths 0606: thí dụ một số bài toán khó

Pham Hoàng Minh — Đăng ngày 27/10/2025
IGC
Cambridge IGCSE

Xét một số bài toán khó trong đề thi Cambridge Additional Maths 0606

Dưới đây là một số bài toán trích, tương tự hóa từ đề thi IGCSE Mathematics Additional 0606 của Cambridge. Đề bài và lời giải bằng tiếng Anh.


** Circle Theorems and Angle Proof (Cyclic Quadrilateral)**

Problem:
A triangle ABCABC is inscribed in a circle with center OO. Given BAC=40\angle BAC = 40^\circ, and chord BCBC extended meets the circle again at DD. Let EE be the second intersection point of line ADAD with the circle. Prove that BED=70\angle BED = 70^\circ.

Solution:

  1. BOC=2×40=80\angle BOC = 2 \times 40^\circ = 80^\circ (angle at center is twice angle at circumference).
  2. BAD=BCD\angle BAD = \angle BCD (angles in the same segment, subtended by arc BDBD).
  3. In BCD\triangle BCD, BCD=180BACABC\angle BCD = 180^\circ - \angle BAC - \angle ABC.
  4. Using alternate segment theorem and cyclic quadrilateral BEDCBEDC, deduce BED=70\angle BED = 70^\circ.

Answer: BED=70\angle BED = 70^\circ.


Optimization with Calculus (Maximum Area of Rectangle)

Problem:
A rectangle has perimeter P=100P = 100 cm. Let xx be the length and yy the width.
(a) Express the area AA in terms of xx.
(b) Find xx that maximizes AA.
(c) Prove the maximum occurs when the rectangle is a square.

Solution:
(a) 2(x+y)=100y=50xA=x(50x)=50xx22(x + y) = 100 \Rightarrow y = 50 - x \Rightarrow A = x(50 - x) = 50x - x^2.
(b) dAdx=502x=0x=25\frac{dA}{dx} = 50 - 2x = 0 \Rightarrow x = 25.
(c) d2Adx2=2<0\frac{d^2A}{dx^2} = -2 < 0 \Rightarrow maximum. When x=y=25x = y = 25, it is a square.


Volume of Revolution (Shell Method about y-axis)

Problem:
The curve y=x33x+2y = x^3 - 3x + 2 intersects the x-axis at points AA, BB, and CC.
(a) Find coordinates of AA, BB, and CC.
(b) Find the volume of the solid formed when the region bounded by the curve and the x-axis is rotated about the y-axis.

Solution:
(a) Solve x33x+2=0(x1)2(x+2)=0x=2,1x^3 - 3x + 2 = 0 \Rightarrow (x-1)^2(x+2) = 0 \Rightarrow x = -2, 1 (double root at x=1x=1).
A(2,0)\Rightarrow A(-2,0), B(1,0)B(1,0), C(1,0)C(1,0).
(b) Use shell method:

V=2π21xydx=2π21x(x33x+2)dx=2π[x55x3+x2]21=9π2.V = 2\pi \int_{-2}^{1} x |y| \, dx = 2\pi \int_{-2}^{1} x (x^3 - 3x + 2) \, dx = 2\pi \left[ \frac{x^5}{5} - x^3 + x^2 \right]_{-2}^{1} = \frac{9\pi}{2}.

Combined Transformations (Matrix Multiplication and Rotation)

Problem:
Given matrices:

M=(0110),N=(2003)M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}

(a) Describe geometrically the transformations represented by MM and NN.
(b) Find the matrix for: “enlarge by scale factor 3 in the yy-direction, then rotate 9090^\circ anticlockwise.”
(c) Find the image of point P(1,2)P(1,2).

Solution:
(a) MM: rotation 9090^\circ anticlockwise about origin.
NN: enlargement scale 2 in xx-direction, scale 3 in yy-direction.
(b) Apply NN first, then MM \Rightarrow combined matrix: MNMN.
(c)

MN=(0110)(2003)=(0320),MN(12)=(62).MN = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & -3 \\ 2 & 0 \end{pmatrix}, \quad MN \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -6 \\ 2 \end{pmatrix}.

** Conditional Probability (Bayes’ Theorem with Replacement)**

Problem:
Three boxes:

  • Box 1: 2 red, 3 blue
  • Box 2: 4 red, 1 blue
  • Box 3: 1 red, 4 blue

A box is chosen at random, then two balls are drawn with replacement. Given both are red, find the probability it was Box 1.

Solution:
Use Bayes’ theorem:

P(H1RR)=P(RRH1)P(H1)P(RR).P(H_1 | RR) = \frac{P(RR|H_1)P(H_1)}{P(RR)}. P(RRH1)=(25)2=425,P(H1)=13.P(RR|H_1) = \left(\frac{2}{5}\right)^2 = \frac{4}{25}, \quad P(H_1) = \frac{1}{3}. P(RR)=13(425+1625+125)=725.P(RR) = \frac{1}{3} \left( \frac{4}{25} + \frac{16}{25} + \frac{1}{25} \right) = \frac{7}{25}. P(H1RR)=42513725=421.\Rightarrow P(H_1|RR) = \frac{\frac{4}{25} \cdot \frac{1}{3}}{\frac{7}{25}} = \frac{4}{21}.

** Recurrence Relation (Solving Linear Recursion with Quadratic Form)**

Problem:
Sequence: u1=2u_1 = 2, u2=5u_2 = 5, u3=10u_3 = 10, and for n4n \geq 4,

un=un1+2un2un3.u_n = u_{n-1} + 2u_{n-2} - u_{n-3}.

(a) Find u4u_4 and u5u_5.
(b) Prove un=an2+bn+cu_n = an^2 + bn + c.

Solution:
(a)

u4=10+2(5)2=18,u5=18+2(10)5=33.u_4 = 10 + 2(5) - 2 = 18, \quad u_5 = 18 + 2(10) - 5 = 33.

(b) Assume un=an2+bn+cu_n = an^2 + bn + c. Substitute:

{a+b+c=24a+2b+c=59a+3b+c=10a=1, b=1, c=0un=n2+n.\begin{cases} a + b + c = 2 \\ 4a + 2b + c = 5 \\ 9a + 3b + c = 10 \end{cases} \Rightarrow a = 1,\ b = 1,\ c = 0 \Rightarrow u_n = n^2 + n.

** 3D Vectors (Angle Between Two Skew Lines)**

Problem:
Two lines:

d1:r=(102)+t(111),d2:r=(010)+s(211).d_1: \vec{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad d_2: \vec{r} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.

Find the angle between d1d_1 and d2d_2.

Solution:
Direction vectors: d1=(1,1,1)\vec{d_1} = (1,1,1), d2=(2,1,1)\vec{d_2} = (2,-1,1).

cosθ=d1d2d1d2=21+136=218=23.\cos \theta = \frac{|\vec{d_1} \cdot \vec{d_2}|}{|\vec{d_1}| \, |\vec{d_2}|} = \frac{|2 - 1 + 1|}{\sqrt{3} \cdot \sqrt{6}} = \frac{2}{\sqrt{18}} = \frac{\sqrt{2}}{3}. θ=cos1(23).\Rightarrow \theta = \cos^{-1}\left(\frac{\sqrt{2}}{3}\right).

** Logarithmic Inequality (Combining Logs and Solving)**

Problem:
Solve:

log2(x+1)+log2(x1)>3.\log_2 (x+1) + \log_2 (x-1) > 3.

Solution:
Domain: x>1x > 1.

log2[(x+1)(x1)]>3x21>23=8x2>9x>3(since x>1).\log_2 [(x+1)(x-1)] > 3 \Rightarrow x^2 - 1 > 2^3 = 8 \Rightarrow x^2 > 9 \Rightarrow x > 3 \quad (\text{since } x > 1).

Solution: x>3x > 3.